

How to Build Gadgets

OmniUpdate User Training Conference 2014

OmniUpdate, Inc.

1320 Flynn Road, Suite 100

Camarillo, CA 93012

http://www.youtube.com/user/OmniUpdateCMS
http://support.omniupdate.com/oucampus9/media/images/administration/multi-target-publish/publish-targets-new-settings.png
http://www.linkedin.com/companies/105547
http://support.omniupdate.com/docs/images/setup/site/publish-targets-new-blank.png
http://support.omniupdate.com/docs/images/pages/publish-target-wysiwyg.png
http://support.omniupdate.com/docs/images/pages/target-publish-multiple-files.png

OU Campus How to Build Gadgets Page 2 of 17

OmniUpdate, Inc.

1320 Flynn Road, Suite 100

Camarillo, CA 93012

800.362.2605

805.484.9428 (fax)

www.omniupdate.com

Copyright ©2014 OmniUpdate, Inc. All rights reserved.

Document Number: TC14-133.1

Publish Date: 3/9/2014

OmniUpdate® and OU Campus™ are trademarks or registered trademarks of OmniUpdate, Inc. Any other company

and product names, and trademarks mentioned within are property of their respective owners. Content is subject to

change without notice.

About OmniUpdate, Inc.
OmniUpdate® is the leading web content management system (CMS) provider for higher education. The company

focuses on providing an exceptional customer experience to its 40,000+ OU Campus™ CMS users who manage

more than 700 college and university websites in the U.S. and around the world. OU Campus is secure and scalable,

and empowers institutions to effectively manage their web and mobile presence by taking advantage of the latest

technologies through its complete feature set, extensible tools, deployment flexibility, and community resources. For

more information, visit www.omniupdate.com.

About This Guide
The How to Build Gadgets provides fundamentals regarding creating and installing a gadget, as well as sample code

for gadgets.

OU Campus Support
The Support site is available to everyone and users are encouraged to visit and browse the site for information. An

institution’s administrators are also available if the answer cannot be found on the Support site or further explanation

and clarification is needed. Administrators may contact the OmniUpdate Support Team. Ways to access the

OU Campus support documentation include:

 Support site: http://support.omniupdate.com/

 The help link in the main interface of OU Campus

 The WYSIWYG Help link

 Help links embedded in the system

 Text instructions are provide onscreen for specific fields and functionality

 OmniUpdate Community Network (OCN): http://ocn.omniupdate.com/

Conventions
Shorthand for navigation through the OU Campus CMS is indicated with a greater-than sign and bolded: > For

example, Setup > Sites. Code snippets use Courier New and a shaded background.

http://www.omniupdate.com/
http://www.omniupdate.com/
http://support.omniupdate.com/
http://ocn.omniupdate.com/

OU Campus How to Build Gadgets Page 3 of 17

Contents

Contents ... 3

Introduction to Gadgets........................... 4

Just What Is a Gadget, Anyway? 4

Some Potential Applications for Gadgets 4

Ingredients of Gadgets 4

Where to Host the Gadget 4

Installing Gadgets in OU Campus 5

The Gadget Configuration File

(config.xml) .. 6

Standard and Custom Config Entries 6

Custom Config Entries 6

Examples of Custom Config Entries 7

Attributes .. 7

private ... 7

overwritable .. 7

label .. 8

Refreshing the Config 8

Building a Very Simple Gadget9

Testing the New Gadget 9

Installing the Gadget in an OU Campus

Account .. 9

Building a More Useful Gadget11

Taking Advantage of gadgetlib.js 12

Using the oucInsertAtCursor Method 13

Reading From and Writing to the Gadget

Config ... 14

Appendices ...16

Appendix A – Table of Standard Config

Entries .. 16

Appendix B – Table of Standard

Messages Sent to Gadgets 17

OU Campus How to Build Gadgets Page 4 of 17

Introduction to Gadgets

Just What Is a Gadget, Anyway?

Gadgets are best thought of as tightly-focused, self-contained web applications that add

functionality to OU Campus. Here are some gadget facts:

 A gadget is just a web page (or a web app).

 Like other web pages or web apps, gadgets are generally written in HTML, CSS, and

JavaScript.

 Each gadget is loaded into its own iframe within the OU Campus interface; hence it is

self-contained.

 Gadgets have full access to the OU Campus API, and they can even interact with the

main OU Campus application in limited ways.

Some Potential Applications for Gadgets

 Content creation utilities

o Color picker

o Placeholder text generator

 Automate repetitive tasks

o Assign a user to multiple groups at once

o Schedule a publish on multiple files at once

 Third-party API clients

o Upload an image from Flickr to OU Campus

o Compose tweet and post to Twitter

Ingredients of Gadgets

Every gadget must have:

1. An http(s) URL that is accessible by the intended users. (Example:

http://www.gallenauniversity.com/mygadget/.)

a. The URL must end in a slash.

b. The gadget must successfully load from that URL.

2. A config.xml document that is accessible over http(s) by appending “config.xml” to the

end of the gadget URL. (Example:

http://www.gallenauniversity.com/mygadget/config.xml.)

That’s all!

Note that the gadget author or gadget administrator must have control over what gets served at

the gadget’s URL. Without that, various problems may be encountered, including an inability to

place the config.xml there.

Where to Host the Gadget

Gadgets are hosted on web servers, like any other web page or web app. The gadget can live

on any web server (web host) to which the gadget author or gadget administrator can write, and

http://www.gallenauniversity.com/mygadget/
http://www.gallenauniversity.com/mygadget/config.xml

OU Campus How to Build Gadgets Page 5 of 17

that is accessible by the intended users from the intended locations. If an intended user can

load the gadget’s URL in a browser tab and not get an http error, the URL is good.

Installing Gadgets in OU Campus

Gadgets are installed in OU Campus at the account level. Each gadget installed has an

associated access group. If a group is not selected, the gadget will be accessible by

administrators only.

Gadget installation is done in Setup > Gadgets (Level 10 administrators only).

1. Click the New button.

2. Enter the gadget URL.

3. Click Fetch.

4. Confirm everything looks okay in the configuration dialog.

5. Save the new gadget.

Users can enable or disable individual gadgets to which they have access. An administrator can

also bulk-enable a gadget for all members of its access group, and/or turn on auto-enable for a

gadget, so that any new members of its access group have the gadget enabled automatically.

OU Campus How to Build Gadgets Page 6 of 17

The Gadget Configuration File (config.xml)

Every gadget must have a configuration file named config.xml that can be read at the URL

constructed by appending “config.xml” to the gadget’s URL. (This URL need not correspond to a

physical file, as long as the web server responds with an XML document in the correct format.)

The purpose of config.xml is to tell OU Campus about the gadget. This includes things like

 Where the gadget can be displayed

 What it is called

The file can also specify custom configuration parameters for the gadget’s own, internal use.

When a gadget is installed into an account in OU Campus, the system reads the config.xml and

adds its data to the OU Campus database. Thereafter, the config.xml is not read again unless

an administrator uses the Refresh function on the gadget management screen.

Here is a simple example config.xml:

<?xml version="1.0" encoding="UTF-8" ?>

<config>

 <entry key="types" private="true">sidebar</entry>

 <entry key="title">My Gadget</entry>

 <entry key="icon" private="true">icon16.png</entry>

 <entry key="description" private="true">My awesome gadget</entry>

 <entry key="thumbnail" private="true">thumbnail96.png</entry>

 <entry key="initial_height" private="true">200</entry>

</config>

Of the entries in this or any config.xml, only the first entry element, with key="types", is

required. The others in the example are mainly cosmetic, although including them is highly

encouraged. The private attribute, which is used by most of the entries in the example, is

explained later.

Standard and Custom Config Entries

Some config entries are known as standard entries; anything else is a custom entry. Standard

entries are those that are recognized by, and have special meaning to, OU Campus. When OU

Campus sees one of these entries in your config.xml, it changes how it displays or interacts with

your gadget in some way. The example config above contains only standard entries.

By contrast, custom entries are ones that are not recognized by OU Campus; they are purely for

your gadget’s own use. Custom entries will be discussed more later.

There is a table that describes all the standard config entries in Appendix A.

Custom Config Entries

A custom config entry can serve at least two purposes. But first, it’s important to understand a

couple of facts about gadget config data:

OU Campus How to Build Gadgets Page 7 of 17

 Since gadget config data is stored in the OU Campus database, it persists across

sessions.

 Custom config data is (potentially) stored in the database on a per-user basis.

Given these facts, it is apparent that a custom config entry can serve, first, as a way for the

gadget to store a variable value persistently, so that it is remembered across sessions. Second,

since custom config data can be stored per-user, it can serve as a way to provide user settings

or preferences to the gadget.

The per-user aspect of custom configs will be explained further in the discussion of the

overwritable attribute, below.

Examples of Custom Config Entries

<entry key="font_size" label="Font Size"

overwritable="true">13px</entry>

This entry could be used to allow users to change the font size the gadget uses.

<entry key="last_selection" private="true"

overwritable="true">Finland</entry>

This entry could be used to remember the user’s last selection in a menu or something.

<entry key="access_token" private="true" overwritable="true"></entry>

If the gadget communicates with a third-party API, such as Facebook’s, the access token could

be stored for each user by means of an empty entry like this.

Attributes

There are three optional attributes that custom config entries can use: private,

overwritable, and label.

private

If an entry has private="true", it will not be exposed anywhere in the OU Campus user

interface, either on the management screen or in the user-level gadget configuration dialog box.

Use private for configs that users and administrators should not be able to edit directly. No

user or administrator can change the value of a private config entry, unless the gadget itself

provides a user interface for changing it. If a config is not private, it is exposed in the gadget

configuration dialog box as a text input field.

There is one exception to the above rule. The standard “title” config entry is always exposed in

gadget configuration dialog boxes, even if its private attribute is set to true. However, if

private is true, OU Campus will not allow administrators to edit the title.

overwritable

By default, only administrators have the ability to change configuration values for a gadget.

They can do so in the gadget’s configuration dialog box that appears when clicking the gadget’s

name on the gadget management screen (Setup > Gadgets). Config values that administrators

OU Campus How to Build Gadgets Page 8 of 17

set are applied account-wide. The new value is used by all the instances of the gadget in users’

OU Campus sessions throughout the account.

However, if a config entry has overwritable="true", the config value is eligible to be

modified and saved on a per-user basis. This means that every user in the OU Campus account

where the gadget is installed can have their own value for that config entry.

Note: A value is not saved for any user until the user actually opens the gadget’s configuration

dialog box and saves the configuration. Until that happens, the user’s instance of the gadget will

continue to use the config value set by an administrator (or the default value, if no other value

was set). But once the user does set a value, the new value will be used by that instance of the

gadget, even if an administrator later changes the value for the account.

label

As mentioned before, if a config entry is not marked as private, it will be exposed as a text input

field in the gadget’s configuration dialog box. Unless a label attribute is added, the input field

will have no label. Set the label attribute value to a concise description of what the config is

about. For example:

<entry key="fullname" label="Your Name" overwritable="true"></entry>

Refreshing the Config

Once a gadget is installed into an OU Campus account, the OU Campus app does not read the

config.xml file again, since its entries have now been transferred to the OU Campus database. If

the gadget author, or someone else who has write access to the config.xml file, subsequently

modifies the file, the changes will not be picked up by OU Campus and written into the database

unless an account administrator uses the Refresh function. This function is one of the options

available on each row of the gadget management screen.

When a gadget is refreshed, a few things happen:

 Any new config entries are added to the database.

 Any entries that have been removed in config.xml are removed from the database.

 For existing, unremoved entries:

o If the state of either the private or the overwritable attribute has changed in

config.xml, the change is reflected in the database and the UI. For example, if a

formerly private entry becomes non-private, it will now be exposed in

configuration dialogs.

o If the entry’s value changes in config.xml, the change is written to the database

at the account level, but only if the entry is private. If the entry is not private, the

database will keep the entry’s old value.

OU Campus How to Build Gadgets Page 9 of 17

Building a Very Simple Gadget

Start with two nearly blank files: a config.xml and an index.html. The latter will provide the entire

contents of the gadget.

For the workshop, in the workshop site:

1. Navigate to the workshop-gadgets directory. Inside will be a folder named blank, which

contains a config.xml and an index.html.

2. Make a copy of this folder inside the same parent folder and rename the copy “hello.”

3. Publish the hello folder so that it will be uploaded to the production server.

4. Open hello.

5. Check out config.xml.

6. Choose Edit > Source.

Notice that config.xml already contains an XML declaration and the root node, <config>. Add

a few entries inside the root node.

<config>

 <entry key="types" private="true">dashboard</entry>

 <entry key="title">My First Gadget</entry>

 <entry key="icon"

private="true">http://www.omniupdate.com/favicon.ico</entry>

</config>

7. Save the file.

8. Open index.html for editing. Within OU Campus, check it out first, and edit using

Source. Notice it already has a little HTML in it. This prevents having to start from

scratch.

9. Start by deleting the words “Gadget content goes here” in the <div id="main">

element.

10. Enter a little content by typing this inside the now-empty div element:

Hello! I am your new gadget.

11. Save and publish the file.

Testing the New Gadget

To test the gadget, first make sure the gadget loads successfully in a browser tab from its web

address. If it fails this test, it won’t be usable in OU Campus either. For this example and during

the workshop, the URL will be: http://workshop[#].outc14.com/workshop-gadgets/hello/.

Remember to change [#] to the workshop number assigned.

Open a new browser tab and load the URL. If successful, the words “Hello! I am your new

gadget.” will be displayed.

Installing the Gadget in an OU Campus Account

1. Log into OU Campus as a Level 10 administrator.

2. Navigate to Setup > Gadgets.

http://workshop[/#].outc14.com/workshop-gadgets/hello/

OU Campus How to Build Gadgets Page 10 of 17

3. Click New.

4. Enter the gadget URL.

5. Click Fetch.

6. Confirm everything looks okay in the configuration dialog.

7. Save the new gadget.

The gadget should now be displayed in the list. Navigate to the Dashboard and verify that the

gadget is displayed in the configuration dialog box.

Inspect the gadget using Chrome’s Inspect Element command to see that it displays in an

ordinary iframe.

OU Campus How to Build Gadgets Page 11 of 17

Building a More Useful Gadget

Next a gadget that does something will be created to expand on the gadget process. This

gadget will take advantage of some gadget-supporting features of OU Campus.

A color picker gadget will let users select a color visually and copy its hexadecimal

representation. An open source color picker will be downloaded from the internet and used. The

color picker will then be “wrapped” in a gadget.

1. Start by making a copy of the hello directory in OU Campus.

2. Name the copy colorpicker.

3. Open the colorpicker folder.

4. Edit config.xml so it looks like this. (Changes are in bold.) Save.

<?xml version="1.0" encoding="UTF-8" ?>

<config>

 <entry key="types" private="true">sidebar</entry>

 <entry key="title">Color Picker</entry>

 <entry key="icon" private="true">icon.png</entry>

 <entry key="initial_height" private="true">288</entry>

</config>

5. Save.

6. Edit index.html.

7. Change the contents of the <title> element to “Color Picker,” and set the contents of

the <div id="main"> element to <input type="text">.

8. Save.

9. The color picker, called Spectrum, consists of a JS file (spectrum.js) and a CSS file

(spectrum.css). These have been included in the /workshop-gadgets/lib folder. In the

<head> of index.html, add a link to spectrum.css like this:

<link rel="stylesheet" href="../lib/spectrum.css">

10. Again in the head section, add a script tag linking to spectrum.js. Since Spectrum

requires jQuery, linking to jQuery is necessary. A copy of jQuery 2.1.0 is included in the

lib folder as well.

<script src="../lib/jquery-2.1.0.min.js"></script>

<script src="../lib/spectrum.js"></script>

11. Add the following <script> element at the end of the body section. This code will

create the color picker and append it below the <input> element, hiding the <input>.

<script>

 $('input').spectrum({

 flat: true,

 showInput: true,

 showButtons: false,

OU Campus How to Build Gadgets Page 12 of 17

 preferredFormat: 'hex'

 });

</script>

12. Save.

13. Publish the entire colorpicker folder.

14. Add the gadget to the OU Campus account.

The gadget should now be available in the sidebar.

To improve the appearance of the color picker, add some style rules that will override parts of

Spectrum’s default stylesheet. In index.html, add the following stylesheet in the head section:

<style>

 #main {

 text-align: center;

 }

 .sp-container {

 margin-bottom: -15px;

 border: none;

 background: none;

 }

 .sp-picker-container {

 border-left: none;

 padding-left: 0;

 padding-right: 0;

 }

 .sp-picker-container {

 width: 220px;

 }

 .sp-input {

 background: white;

 }

</style>

After saving (and publishing) the file, reload the gadget’s iframe to see the changes. (In

Chrome, right-click inside the gadget and choose Reload Frame.)

Taking Advantage of gadgetlib.js

The color picker’s functionality can be extended by automatically inserting the hex value into the

source code by clicking a button in the gadget. This is accomplished by using a special function,

oucInsertAtCursor, which is included in OmniUpdate’s gadget library, gadgetlib.js. There is

a copy of gadgetlib.js in the /workshop-gadgets/lib folder.

To use gadgetlib in the gadget, add a <script> tag linking to it:

<script src="../lib/gadgetlib.js"></script>

OU Campus How to Build Gadgets Page 13 of 17

Before using any function in gadgetlib, create an instance of the Gadget object, whose

constructor is included in gadgetlib. Once there is a Gadget instance, call on the various

methods of Gadget to get things done.

To create a Gadget instance, just add the following line at the top of the body script:

var gadget = new Gadget();

Using the oucInsertAtCursor Method

A gadget can insert arbitrary text or HTML into the source editor or the WYSIWYG Editor of OU

Campus by calling gadget.oucInsertAtCursor.

1. Start by adding an Insert button by which the user can indicate that the color value

should be inserted. In the main div, add a <button> element below the <input> tag,

like this:

<div id="main">

 <input type="text">

 <button id="insert-btn">Insert</button>

</div>

2. Next, style the button by adding styling to the gadget’s internal stylesheet:

 #insert-btn {

 width: 220px;

 font-size: 13px;

 }

3. Then add the code that calls gadget.oucInsertAtCursor when the user clicks the

Insert button. Insert this at the bottom of the body script:

$('#insert-btn').on('click', function () {

 var color = $('input').spectrum('get').toHexString();

 gadget.oucInsertAtCursor(color).then(function (result) {

 if (result.error) {

 alert(result.error);

 }

 });

});

oucInsertAtCursor takes one argument, which is the text to be inserted into the editor in

OU Campus. If the text is HTML and the editor is WYSIWYG, the editor will create the

appropriate DOM elements and insert them at the cursor. Otherwise, the text will be inserted as-

is. In this case, this argument is set to the hex string of the selected color.

The method returns a jQuery Deferred object. This object can then be chained with a then

function to the call. This function will run once OU Campus has finished executing the content

insertion, whether successful or not. The then function will pass an argument providing the

result of the insertion. The argument will look like one of the following: {success: true} or

{error: "An error occurred."}.

OU Campus How to Build Gadgets Page 14 of 17

Test the Insert button now. Save and publish index.html, reload the gadget’s iframe, and then

return to the source editor for index.html.

1. Add a style attribute to the <body> tag and set the background color for the gadget

body in this attribute. Add a style attribute like this, leaving an empty space for the

color value:

<body style="background-color: ;">

2. Place the cursor (insertion point) just before the semicolon.

3. Pick a color in the color picker and click Insert.

The selected color’s hex value should be inserted into the source editor at the location of the

cursor.

Reading From and Writing to the Gadget Config

The gadget can take advantage of configuration reading and writing. For instance, the last-used

color value can be stored in such a way that it can be retrieved later. This can be done by

adding a custom configuration parameter to the gadget.

Add a custom entry to the config.xml file:

<entry key="initial_color" label="Starting Color"

overwritable="true"></entry>

To transfer this new config entry to the OU Campus database, click the Refresh hover option

for the gadget on the gadget management screen.

Since the config entry is not private and is overwritable, users will be able to edit the value of

initial_color in the gadget’s configuration dialog box by clicking the new “gear” icon in the

gadget’s title bar. Enter any valid CSS value, including both text and hex values.

Add some code to the gadget to read the initial_color value from the database when the

gadget is loaded. The Gadget object has a method, fetch, that will fetch a gadget’s

configuration using the OU Campus API. This method also returns a jQuery Deferred object, so

a then function can be chained to the fetch call and complete an action with the fetched data

when the fetch is complete. In this case, the action will be to set the color of the picker to the

fetched color value.

function setColor(color) {

 $('input').spectrum('set', color);

}

gadget.fetch().then(function () {

 var color = gadget.getConfig('initial_color');

 setColor(color);

});

After reloading the gadget’s iframe, the gadget will read the user-specified color from the

configuration and automatically set the picker to it.

OU Campus How to Build Gadgets Page 15 of 17

To further improve the user experience, the gadget can change the picker color as soon as the

user configures it; instead of having to wait for a reload. This is accomplished by adding an

event listener for the configuration event to the gadget. This works because whenever a

gadget’s configuration changes, OU Campus sends the new configuration to the gadget using

HTML5’s postMessage method, and then the Gadget object converts the message into a

configuration event, which can be listened for with $(gadget).on('configuration').

Here’s the code:

$(gadget).on('configuration', function (evt, data) {

 setColor(data.initial_color);

});

The data argument will contain the entire configuration, as if the gadget had been fetched with

gadget.fetch. The handler function then simply calls setColor.

When the gadget receives a configuration message from OU Campus, the Gadget object will

set its config property to the new configuration, so that subsequent gadget.getConfig calls

will return updated values.

Finally, add the code that will cause the gadget to save the selected color to the OU Campus

database. In this case, the gadget will not be reading the stored configuration but instead writing

to it. This will be done when the user clicks the Insert button. All that is needed is to add one

line to the click handler on the button.

Here is the click handler again, with the added line in bold:

$('#insert-btn').on('click', function () {

 var color = $('input').spectrum('get').toHexString();

 gadget.oucInsertAtCursor(color).then(function (result) {

 if (result.error) {

 alert(result.error);

 }

 });

 gadget.save('initial_color', color);

});

The code calls the save method of the Gadget object and passing it two arguments, which are

the name of the config parameter to save, and the new value. The Gadget object will first

update its internal configuration with the new value, and then it will use the OU Campus API to

update the stored configuration in the database.

After saving and publishing the file and reloading the gadget iframe, by clicking Insert the

gadget will save the selected color back to the database. This can be verified by reloading the

gadget iframe again. The picker should be set to the saved color.

OU Campus How to Build Gadgets Page 16 of 17

Appendices

Appendix A – Table of Standard Config Entries

Key Purpose

types

Required. Determines where the gadget can appear in the OU Campus
user interface. Currently supported types are “dashboard” and
“sidebar”. Multiple types can be defined with a comma-separated list.

title

The name that appears in the gadget’s title bar, in the gadget chooser,
and on the management page. The title of an installed gadget can be
edited by an admin unless this key is set to private (see explanation of

the private attribute below). Do not leave this blank.

icon
The icon that appears in the gadget’s title bar and on the management
page. For best results, use a 16 x 16 pixel image. The URL can be
absolute, root-relative, or relative to the gadget’s index page.

description The description that appears in the gadget chooser.

thumbnail
The thumbnail image that appears in the gadget chooser. This is
displayed at 96 x 96 pixels. The URL can be absolute, root-relative, or
relative to the gadget’s index page.

columns
Dashboard gadgets only. Determines the width of the dashboard
gadget in columns. Supported values are 1, 2, and 3.

initial_height

Sidebar gadgets only. Determines the default height of the sidebar
gadget in pixels when it is expanded. OU Campus may override this
value under various circumstances.

sidebar_context

Sidebar gadgets only. Specifies contexts in which the sidebar gadget
will be visible. If the current context of OU Campus is not one of the
specified ones, the gadget will be hidden. Currently supported contexts
include:

Context In Effect When

page The “subject” of the current view is a single page.

asset The “subject” of the current view is a single asset.

file The “subject” of the current view is either a page or an asset.

edit The current view is either the WYSIWYG editor or the source
code editor.

If you do not specify any sidebar contexts, the gadget will appear in all
contexts.

notifications
Specifies types of notification events that will be passed on to the
gadget.

OU Campus How to Build Gadgets Page 17 of 17

Appendix B – Table of Standard Messages Sent to Gadgets

Name Description

configuration
Sent when a gadget’s configuration changes. The content of the
message is a plain object giving the (entire) configuration.

expanded
Sent when the gadget is expanded—i.e., its disclosure button is toggled
to the “down” state, showing the gadget. Message has no content.

collapsed
Sent when the gadget is collapsed—i.e., its disclosure button is toggled
to the “up” state, hiding the gadget. Message has no content.

view_changed

Sent when the OU Campus application’s view has changed—i.e., the
user has navigated to a different place in the application. The message

content is a plain object with, at minimum, a section property that tells

what area of the app the user is in. Currently, the possible values of

section are "dashboard", "content", "reports", and "setup."

If the current view is a directory listing, the message data will have a

directory property giving the root-relative path of the directory.

If the current view deals with an individual page, the message data will

have a page property giving the root-relative path of the file.

If the current view deals with an individual asset, the message data will

have an asset property giving the ID of the asset.

notification

If the gadget’s config.xml contains a "notifications" entry, when the

OU Campus application receives a notification from the OU Campus
server, if the notification type matches one of the types specified in the
config entry, the notification content will be passed on to the gadget in
the content of this message.

